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Group theory arguments have been invoked to argue that odd-parity order parameters cannot have line nodes
in the presence of spin-orbit coupling. In this Rapid Communication we show that these arguments do not hold
for certain nonsymmorphic superconductors. Specifically, we demonstrate that when the underlying crystal has
a twofold screw axis, half of the odd-parity representations vanish on the Brillouin-zone face perpendicular to
this axis. Many unconventional superconductors have nonsymmorphic space groups, and we discuss implica-
tions for several materials, including UPt3, UBe13, Li2Pt3B, and Na4Ir3O8.
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I. INTRODUCTION

Unconventional superconducting materials include heavy
fermion metals,1 organics,2 and cuprates.3 The unconvention-
ality of these materials is reflected in the symmetry of the
Cooper pair wave function: in contrast to their “conven-
tional” counterparts, unconventional Cooper pairing not only
breaks gauge but also crystal symmetry. This opens the pos-
sibility of odd-parity pairing where by fermion antisymme-
try, the spins are in a triplet state.

Among unconventional superconductors, an important
class are those whose order parameter vanishes somewhere
on the Fermi surface. The presence or absence of these nodes
determines the low-energy excitations and thus the low-
temperature thermodynamic and transport properties. It is
generally stated that in the presence of spin-orbit interac-
tions, an odd-parity order parameter cannot have a line of
nodes on the Fermi surface. This is known as Blount’s
theorem.4 In contrast, this restriction does not exist for an
even-parity order parameter. There are, though, several
heavy fermion superconductors where Knight-shift data in-
dicate that the Cooper pair spins are in a triplet state, yet
thermodynamic measurements imply the existence of a line
of nodes.5

The aim of the present Rapid Communication is to inves-
tigate the generality of Blount’s arguments. Specifically, we
show that in crystals with a twofold screw axis, line nodes
are possible whenever the Fermi surface intersects the
Brillouin-zone face perpendicular to this axis even in the
presence of spin-orbit interactions. Since many unconven-
tional superconductors have nonsymmorphic space groups, it
provides a large class of counterexamples to Blount’s theo-
rem. We discuss implications for several materials of inter-
est.

In the presence of spin-orbit coupling, spin is no longer a
good quantum number. On the other hand, Anderson showed
that because of fermion antisymmetry, one can write down
analogs of Cooper pair singlets and triplets.6 By Kramers
theorem, one has two degenerate states present at k. Cou-
pling them to the two degenerate states at −k, one has an
even-parity state that is a “pseudospin” singlet and an odd-
parity state that is a pseudospin triplet. Blount has shown,
though, that this puts restrictions on the form of the odd-
parity state.4 A node requires the simultaneous fulfilling of

two real equations. Since two equations in three variables are
commonly satisfied on curves, and these intersect the Fermi
surface at isolated points, nodes for the odd-parity Cooper
pair wave function should only occur for points on the Fermi
surface. To assure that symmetry cannot force an increase in
the size of the nodal regions, Blount discusses the presence
of mirror planes. He argues that the pseudospin components
of the odd-parity wave function form an axial vector, whose
components parallel and perpendicular to the plane transform
according to different representations. Symmetry may only
force one of these components to vanish, and therefore a
larger region of zero gap is “vanishingly improbable.”

Blount’s symmetry considerations obviously apply to
point-group operations and, consequently, to any symmor-
phic space group. A nonsymmorphic space group, on the
other hand, contains screw axes and glide planes, i.e., the
combined operation of point-group elements with nonprimi-
tive translations. The latter generate additional phase factors,
which in special situations may conspire in a way that all of
the order parameter’s pseudospin components transform ac-
cording to the same representation.7 In this case, symmetry
enforces the vanishing of the order parameter belonging to
some representations. A particular example of such a case
was encountered for the hexagonal close-packed lattice of
UPt3, where this was shown explicitly by construction from
the single electron wave functions.8 That is, for odd-parity
representations that are also odd under the symmetry opera-
tion z→−z, it was claimed that all pseudospin components
vanish on the hexagonal zone face kz=� /c. We will employ
group theory arguments to illustrate the generality of this
argument.

II. GROUP THEORY

The group theory approach to Cooper pair wave functions
of unconventional superconductors goes back to Anderson.6

Classifications of pair states at the zone center rely on irre-
ducible representations of point groups and have been listed
for many relevant crystal symmetries.9 Building on work on
antisymmetrized Kronecker squares of induced
representations,10 a more general space-group approach has
been developed to deduce which Cooper pair symmetries are
allowed at arbitrary points in the Brillouin zone.11
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Here, we consider a general nonsymmorphic space-group
symmetry G, containing inversion symmetry �I ,0� and a
twofold screw axis �2z , t2�. The latter is a symmetry opera-
tion combining a � rotation 2z around some axis with a non-
primitive translation t2= c

2ez along the axis by half of the
lattice displacement c �we choose this axis to define the z
direction�. �E ,0� denotes the identity element and �z= I2z.
Also, we assume the presence of spin-orbit interactions.

The space-group approach calculates representations P�k�
of the Cooper pair wave function at a given k point in the
Brillouin zone by the method of induced representations,10–12

P�k� = �
�

P�
−↑G . �1�

To explain this notation, we proceed in two steps: �i� we
outline the construction of representations P�

− and �ii� we
indicate a prescription how induced representations P�

− ↑G
may be calculated.

Concerning �i�, representations P�
− at a k point in the zone

are constructed from small representations �k of the symme-
try group of wave vector k �“little group” Gk�. Referring for
details to Refs. 10–12, we merely state the procedure: the
sum � in Eq. �1� extends over those representatives d� in a
double coset decomposition G=��Gkd�Gk, for which g=k
+d�k is a vector of the reciprocal lattice. This latter condi-
tion accounts for the Cooper pair’s vanishing total momen-
tum �modulo a reciprocal lattice vector�. Introducing the in-
tersection of wave-vector groups M�=Gk�d�Gkd�

−1 and
choosing an element a�d�Gk�Gkd�

−1, P�
− is then the repre-

sentation of M̃�=M�+aM� induced from �k by the follow-
ing definition of its characters �m�M��

��P�
−�m�� = ���k�m�����k�d�

−1md��� , �2�

��P�
−�am�� = − ���k�amam�� . �3�

Turning to �ii�, induced representations are conveniently cal-
culated with the help of the “Frobenius reciprocity
theorem.”12 In the context of Eq. �1�, the theorem states that
the number of times nj an irreducible representation � j of G
appears in the decomposition P�k�=� jnj�

j equals the num-
ber of times P�

− appears in the decomposition of � j into irre-

ducible representations �̃ j of the “subduced” group G�M̃.

Here, both � j and �̃ j are representations at the zone center.

We summarize �̃ j for points of interest in Table I. Line nodes
of the odd-parity Cooper pair wave function may arise if any

of the odd-parity representations �̃u
j are absent in the decom-

position P�
− =� jmj�̃

j in a symmetry plane of the zone that
intersects the Fermi surface.

To apply the outlined procedure, we need to identify small
representations �k. Our main focus is on k vectors on the
zone face �ZF� kz=� /c. For purpose of illustration we also
discuss the symmetry plane �SP� kz=0 and a general k point
�GP�. In the presence of spin-orbit interactions, spin and real
spaces do not transform independently, and the spin rotation
group is absorbed into the crystal’s space group. Moreover,

extra degeneracies may occur due to time-reversal symmetry.
Both effects are taken into account when considering co-
representations of the little group Gk.

For illustration, let us derive representations P�
− for a gen-

eral k point: the little group GGP consists only of the identity
and its multiplication with primitive translations. A co-
representation �GP is characterized by the identity’s charac-
ter, ���E ,0��, which is two from the fact that any point in the
zone is twofold degenerate �Kramers theorem�. The only
double coset representative satisfying the zero-momentum
condition is d1= �I ,0�. M1 is identical to GGP and a= �I ,0�.
The representation P1

− is then readily deduced from Eqs. �2�
and �3�, see Table II �top�. The decomposition of P1

− into

representations �̃ j of Table I �top� results in P1
−=�g+3�u.

This corresponds to Anderson’s classification of the Cooper
pair wave function into an even-parity pseudospin singlet
and an odd-parity pseudospin triplet. At a general k point,
there is no symmetry reason for any of them to vanish.

Next, we turn to points in the symmetry planes: little
groups GSP and GZF are both formed by �E ,0�, ��z , t2�, and
their multiplication with primitive translations. To account
for the appearance of nontrivial phase factors, one has to
resort to the little groups’ central extensions and look at their
projective representations.12 One may readily convince one-
self of the absence of nontrivial phase factors for wave vec-

TABLE I. Characters of representations �̃ j of the subduced

groups. The table �top� applies to the group G�M̃ for a general

point in the zone; the table �bottom� applies to the group G�M̃ for
points in the planes kz=0 and kz=� /c. Here g refers to even parity
and u odd parity refers to representations.

�̃ j �E ,0� �I ,0�

�g 1 1

�u 1 −1

�̃ j �E ,0� �2z , t2� �I ,0� ��z , t2�

Ag 1 1 1 1

Bg 1 −1 1 −1

Au 1 1 −1 −1

Bu 1 −1 −1 1

TABLE II. Representations Pi
− induced by �k. Top table: repre-

sentation for a general k point. Bottom table: representations for
kz=0 and kz=� /c are given by the first and second line,
respectively.

P1
− �E ,0� �I ,0�

GP 4 −2

P1,2
− �E ,0� �2z , t2� �I ,0� ��z , t2�

SP 4 2 −2 0

ZF 4 −2 −2 4
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tors that satisfy kz=0. For points on the zone face, however,
nontrivial phase factors arise. As a result, GSP and GZF define
different groups. They can be identified by their multiplica-
tion table, and their co-representations can be looked up. The
�relevant� characters of the co-representations are as follows:
for kz=0, there are two identical co-representations �SP char-
acterized by ���E ,0��=2 and ����z , t2��=0. At the zone face,
on the other hand, there are two complex conjugate co-
representations �ZF with characters ���E ,0��=2 and
����z , t2��= 	2i. The different characters ����z , t2�� for
these two cases reflect the different type of degeneracy en-
countered, i.e., a pairing degeneracy and a doubling degen-
eracy, respectively.13

Wave vectors for both symmetry planes allow for d1
= �I ,0� and d2= �2z , t2�, resulting in M1,2 both identical to the
little group. Also, it is always possible to choose a= �I ,0�.
Application of Eqs. �2� and �3� to kz=0 and d1 results in the
first line of Table II �bottom�.14 Using instead d2 leads to the
identical result in the second line �thus P1

−� P2
−�. The decom-

position into irreducible components �̃ j of Table I �bottom� is
Pi

−=Ag+2Au+Bu, showing that half of the even-parity repre-
sentations �Bg� vanish for kz=0. Odd-parity representations,
on the other hand, are all present, indicating the absence of
line nodes. This is a consequence of Blount’s argument since
phase factors related to the twofold screw axis are all trivial.

At the zone face, d1 and d2 lead again to identical repre-
sentations. Also, results for both co-representations �ZF �i.e.,
for characters ����z , t2��= 	2i� are identical. The result is
shown in the second line of Table II �bottom�.15 The decom-
position

P1,2
− = Ag + 3Bu �4�

implies that half of the odd-parity representations �Au� van-
ish. Equation �4� is the main result of this Rapid Communi-
cation. It shows that in crystals with a twofold screw axis,
line nodes for odd-parity Cooper pair wave functions may
occur whenever the Fermi surface intersects the Brillouin-
zone face perpendicular to the screw axis. Our finding has
relevance for a variety of unconventional superconductors.

III. IMPLICATIONS

We first discuss the heavy fermion metal UPt3, which was
mentioned before. Its nonsymmorphic space group P63 /mmc
possesses a twofold screw axis perpendicular to the kz
=� /c face of the hexagonal zone. Two of the Fermi-surface
sheets intersect this zone face.16 From our above analysis, it
follows that for kz=� /c, only those odd-parity representa-
tions �of point group 6 /mmm� are allowed that are even un-
der the operation z→−z. That is, an odd-parity wave func-
tion belonging to the representations A1u, A2u, or E2u has line
nodes on the Fermi surface. This potentially clears up a ma-
jor puzzle in this material, where various measurements are
consistent with a line of nodes,17 but the Knight shift indi-
cates a spin triplet order parameter.5 We note that an E2u
order parameter has been proposed to explain various experi-
mental properties of UPt3,18 and recent phase sensitive mea-
surements are in support of this proposal.19

Another heavy fermion superconductor to which our ob-
servation applies is UBe13. Again, the Knight shift suggests a
spin triplet state,5 while measurements of the NMR relax-
ation rate find a power law consistent with the presence of a
line of nodes.20 UBe13 has the nonsymmorphic space group

Fm3̄c that has twofold screw axes perpendicular to the
square faces of the face-centered-cubic zone. The Fermi sur-
face is predicted to have pockets that intersect these faces.21

Therefore, odd-parity Cooper pair wave functions belonging

to the representations �of point group m3̄m� A1u, A2u, or Eu
should have line nodes on the Fermi surface.

Our next example concerns the recently discovered non-
centrosymmetric superconductor Li2Pt3B.22 Measurements
of the temperature-dependent penetration depth point toward
the existence of line nodes. This finding has been attributed
to a mixing of even- and odd-parity components of the Coo-
per pair wave function.23 In crystals without inversion sym-
metry, spin-orbit coupling lifts the Kramers degeneracy of
the k states. If the energy splitting s resulting from this is
sufficiently large compared to the superconducting gap, Coo-
per pairs can be admixed, 
	=�	 t, with pseudospin singlet
and triplet components, � and t, respectively.24 If t is large
enough, 
− may change sign, and thus a line of nodes is
possible. Given our above findings, we propose a second
mechanism for the appearance of a line of nodes in Li2Pt3B
that would occur in the opposite limit of weak spin-orbit
splitting of the bands. Li2Pt3B has the space-group symmetry
P4132. This exhibits a twofold screw axis perpendicular to
the faces of the simple cubic zone. The Fermi surface of
Li2Pt3B is predicted to have several small pockets that inter-
sect these faces.25 If s is small enough that the mixing of
odd- and even-parity components is not important, then Coo-
per pair wave functions belonging to the representations �of

point group m3̄m� A1u, A2u, or Eu can have line nodes on the
Fermi surface. In contrast to the first scenario, these line
nodes are now constrained by symmetry. Experiments should
be able to differentiate between these two scenarios.

Finally, we mention the more exotic example of Na4Ir3O8,
which is a candidate for a three-dimensional �3D� spin
liquid.26 It has been proposed that this material possesses a
“spinon” Fermi surface.27,28 At the lowest temperatures,
however, the specific heat decreases to zero as T2, indicating
�within this scenario� a line of nodes on this spinon surface.
This phenomenon has been recently attributed to pairing of
the spinons in a mixed state as described above for
Li2Pt3B.28 Interestingly, Na4Ir3O8 has the same space group
P4132 and the predicted spinon Fermi surface also intersects
the simple cubic zone faces. Therefore, our previous discus-
sion for Li2Pt3B applies to this material as well, and we
conclude that a pure triplet state with a line of nodes is also
possible.

IV. CONCLUSIONS

We have shown that in some nonsymmorphic supercon-
ductors, it is possible to reconcile the existence of line nodes
of an odd-parity Cooper pair wave function with the pres-
ence of �strong� spin-orbit interactions. Specifically, we have
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proven that Blount’s theorem is superseded for supercon-
ductors possessing a twofold screw axis with a Fermi surface
intersecting the zone face perpendicular to this axis. Our ob-
servation has potential relevance to a variety of unconven-
tional superconductors and spin liquids.
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